SCALE Seminar @ UCB
PhD Student
School of Electrical and Computer Engineering, Georgia Tech
2025-09-29
Dr. Samuel Coogan
Associate Professor
Georgia Institute of Technology
Dr. Saber Jafarpour
Research Assistant Professor
University of Colorado Boulder
Brendan Gould
PhD Student
Georgia Institute of Technology
Image Credit: OpenAI
Consider the closed-loop system \[ \dot{x} = f(x,w), \] \(x\in\mathbb{R}^{n_x}\), \(w\in\mathbb{R}^{n_w}\).
Possible use-cases:
Crucial Tradeoffs: how to balance accuracy, efficiency, and guarantees?
Level Set Methods [1]
Finds a function \(g(t,x)\) whose \(0\) sublevel set \(\{x : g(t,x) \leq 0\}\) is the reachable set of the system at time \(t\).
Set-Based Methods [3]
Propogates set-overapproximations through the system dynamics
Simple theoretical modifications \(\implies\) accuracy benefits for little computational cost
Theory: A general framework for constraint-based reachable set propogation using a controlled parametric embedding system.
Computation: An efficient implementation using our tool immrax for interval analysis in JAX for Python
Differential Geometry: Extensions of these ideas for safety verification of systems evolving on Lie groups and homogeneous manifolds
A theoretical framework for reachable set computation using a controlled dynamical embedding system
\[ \dot{x} = Ax, \] with initial condition \(x_0\) inside a halfspace \[ \alpha_0(x_0 - {\mathring{x}}_0) \leq y_0, \] \(\alpha_0\in\mathbb{R}^{1\times{n_x}}\), \({\mathring{x}}_0\in\mathbb{R}^{n_x}\), \(y_0\in\mathbb{R}\). How does the halfspace evolve?
If we set \(\dot{{\mathring{x}}} = A{\mathring{x}}\) and \(\dot{\alpha}^T = -A^T\alpha^T\), [4] \[ \tfrac{\mathrm{d}}{\mathrm{d}t} [\alpha (x - {\mathring{x}})] = -\alpha A(x - {\mathring{x}}) + \alpha A(x - {\mathring{x}}) = 0. \] Thus the trajectory of the ODE \[ \dot{{\mathring{x}}} = A{\mathring{x}}, \ \dot{\alpha} = -\alpha A, \] yields supporting halfspace \(\{x : \alpha(t)(x - {\mathring{x}}(t)) \leq y_0\}\).
\[ \dot{x} = Ax, \] with initial condition \(x_0\) inside an H-rep polytope \[ \alpha_0(x_0 - {\mathring{x}}_0) \leq y_0, \] \(\alpha_0\in\mathbb{R}^{{n_y}\times{n_x}}\), \({\mathring{x}}_0\in\mathbb{R}^{n_x}\), \(y_0\in\mathbb{R}^{n_y}\), \(\leq\) is element-wise. Flow each row of \(\alpha\) using the adjoint dynamics \[ \dot{{\mathring{x}}} = A{\mathring{x}}, \ \dot{\alpha} = -\alpha A, \] then \[ \alpha(t)(x(t) - {\mathring{x}}(t)) \leq y_0. \]
\[ \dot{x} = Ax, \] with initial condition \(x_0\) satisfying \[ h(\alpha_0(x_0 - {\mathring{x}}_0)) \leq y_0. \] Flow \(\alpha\) using the adjoint dynamics \[ \dot{{\mathring{x}}} = A{\mathring{x}}, \ \dot{\alpha} = -\alpha A, \] then we still get \[ \tfrac{\mathrm{d}}{\mathrm{d}t} h(\alpha(x - {\mathring{x}})) = \tfrac{\partial h}{\partial z} [-\alpha A(x - {\mathring{x}}) + \alpha A(x - {\mathring{x}})] = 0, \] and therefore that \[ h(\alpha(t)(x(t) - {\mathring{x}}(t))) \leq y_0. \]
\[ \dot{x} = Ax, \] with initial condition \(x_0\) satisfying \[ \|\alpha_0(x_0 - {\mathring{x}}_0)\|_2 \leq y_0. \] Flow \(\alpha\) using the adjoint dynamics \[ \dot{{\mathring{x}}} = A{\mathring{x}}, \ \dot{\alpha} = -\alpha A, \] then \[ \|\alpha(t)(x(t) - {\mathring{x}}(t))\|_2 \leq y_0. \]
\[ \dot{x} = f(x), \] with initial condition \(x_0\) satisfying \[ \alpha_0(x_0 - {\mathring{x}}_0) \leq y_0. \] Fix \(\dot{\alpha} = 0\) and flow offsets \(y\) such that \[ \begin{aligned} \dot{{\mathring{x}}} &= f({\mathring{x}}) \\ \dot{y}_k &\geq \sup_{\substack{x:\alpha(x - {\mathring{x}}) \leq y \\ \alpha_k(x - {\mathring{x}}) = y_k}} \alpha_k (f(x) - f({\mathring{x}})) \end{aligned} \] then \[ \alpha_0(x(t) - {\mathring{x}}(t)) \leq y(t) \]
Summary: \(x(t)\in\{x : \alpha(t)(x - {\mathring{x}}(t)) \leq y(t)\}\) if
Linear System: Evolve parameters \(\alpha\) using the adjoint dynamics \[ \begin{aligned} \dot{{\mathring{x}}} &= A{\mathring{x}}, \\ \dot{\alpha} &= -\alpha A \\ \dot{y} &= 0 \end{aligned} \] (this generalized to nonlinear functions of \(\alpha(x - {\mathring{x}})\))
Nonlinear System: Evolve offsets \(y_k\) using bound of vector field in the direction of row \(\alpha_k\) \[ \begin{aligned} \dot{{\mathring{x}}} &= f({\mathring{x}}) \\ \dot{\alpha} &= 0 \\ \dot{y}_k &\geq \sup_{\substack{x:\alpha(x - {\mathring{x}}) \leq y \\ \alpha_k(x - {\mathring{x}}) = y_k}} \alpha_k (f(x) - f({\mathring{x}})) \end{aligned} \]
Our Idea:
We can define a new class of sets as the intersection of \(\alpha\)-parameterized sublevel sets: \[ \{x : g(\alpha,x - {\mathring{x}}) \leq y\} = \bigcap_{k=1}^{{n_y}} \{x : g_k(\alpha,x - {\mathring{x}}) \leq y_k\}, \] for centering point \({\mathring{x}}\in\mathbb{R}^{n_x}\), parameters \(\alpha\in\mathbb{R}^{n_\alpha}\), offsets \(y\in\mathbb{R}^{n_y}\), and nonlinearity \(g:\mathbb{R}^{n_\alpha}\times\mathbb{R}^{n_x}\to\mathbb{R}^{n_y}\).
We will define dynamics on \({\mathring{x}},\alpha,y\) \[ \dot{{\mathring{x}}} = f({\mathring{x}}), \quad \dot{\alpha} = ??, \quad \dot{y} = ??, \] such that every trajectory of the system was contained in the trajectory of this embedding system as \[ x_0\in \{x : g(\alpha(t_0),x - {\mathring{x}}(t_0)) \leq y(t_0)\} \implies x(t) \in \{x : g(\alpha(t),x - {\mathring{x}}(t)) \leq y(t)\}. \]
Notationally we denote the \(k\)-th facet \[ \left(\!\left( {\mathring{x}},\alpha,y \right)\!\right)^k_g := \left(\!\left( {\mathring{x}},\alpha,y \right)\!\right)_g \cap \{x\in\mathbb{R}^{n_x}: g_k(\alpha,x - {\mathring{x}}) = y_k\} \]
Define an embedding system, \[ \begin{aligned} \dot{{\mathring{x}}} &= f({\mathring{x}},{\mathring{w}}), \\ \dot{\alpha} &= U(t,{\mathring{x}},\alpha,y) \\ \dot{y} &= E(t,{\mathring{x}},\alpha,y) \end{aligned} \] evolving on \(\mathbb{R}^{n_x}\times\mathbb{R}^{n_\alpha}\times\mathbb{R}^{n_y}\), for some nominal disturbance \({\mathring{w}}(t)\).
\[ \begin{gathered} \forall k, \quad x \in \left(\!\left( {\mathring{x}},\alpha,y \right)\!\right)_g^k = \{x\in\mathbb{R}^{n_x}: g(\alpha,x - {\mathring{x}}) \leq y,\, g_k(\alpha,x - {\mathring{x}}) = y_k\}, \quad w\in \mathcal{W}\implies \\ \dot{y}_k = E_k(t,{\mathring{x}},\alpha,y) \geq \frac{\partial g_k}{\partial \alpha}(\alpha,x - {\mathring{x}}) [U(t,{\mathring{x}},\alpha,y)] + \frac{\partial g_k}{\partial x} (\alpha,x - {\mathring{x}}) [f(x,w) - f({\mathring{x}},{\mathring{w}})] \end{gathered} \]
Term 1: infinitesimal change in offset due to the infinitesimal change \(U\) in the parameters
Term 2: the component of \(f\) in the direction of the normal vector \(\frac{\partial g_k}{\partial x}\) to the \(k\)-th facet at the point \(x\)
Our inequality is reminiscent of some standard results \[ \begin{gathered} \forall k, \quad x \in \left(\!\left( {\mathring{x}},\alpha,y \right)\!\right)_g^k = \{x\in\mathbb{R}^{n_x}: g(\alpha,x - {\mathring{x}}) \leq y,\, g_k(\alpha,x - {\mathring{x}}) = y_k\}, \quad w\in \mathcal{W}\implies \\ \dot{y}_k = E_k(t,{\mathring{x}},\alpha,y) \geq \frac{\partial g_k}{\partial \alpha}(\alpha,x - {\mathring{x}}) [U(t,{\mathring{x}},\alpha,y)] + \frac{\partial g_k}{\partial x} (\alpha,x - {\mathring{x}}) [f(x,w) - f({\mathring{x}},{\mathring{w}})] \end{gathered} \]
Statements about the flow become boundary conditions on the system vector field \(f\) in continuous-time
Technical assumption: Require transverse facet intersections, meaning \[ \left\{\frac{\partial g_k}{\partial x}(\alpha,x - {\mathring{x}}) : \forall k \text{ s.t. } g_k(\alpha,x - {\mathring{x}}) = y_k\right\} \] is a linearly independent subset of \((\mathbb{R}^{n_x})^*\).
\[ \begin{gathered} % x \in \param{\ox,\alpha,y}_g^k, \quad w\in \calW \implies \\ \dot{y}_k = E_k(t,{\mathring{x}},\alpha,y) \geq \sup_{ x\in\left(\!\left( {\mathring{x}},\alpha,y \right)\!\right)_g^k,\, w\in \mathcal{W}} \left[\frac{\partial g_k}{\partial \alpha}(\alpha,x - {\mathring{x}}) [U(t,{\mathring{x}},\alpha,y)] + \frac{\partial g_k}{\partial x} (\alpha,x - {\mathring{x}}) [f(x,w) - f({\mathring{x}},{\mathring{w}})] \right] \end{gathered} \] How can we obtain comuptationally efficient and guaranteed bounds of this inequality?
immrax: Interval Analysis in JAXEfficient, Scalable, and Differentiable Implementation using JAX for Python
Compositional strategy:
Efficient runtime execution
Dispatch parallel computations to GPU when applicable
[Input] is differentiable with respect to [Output]
natif is fully compatible/composable with all other JAX transformationslower and upper attribute for lower and upper bound of interval.
f into a JAX program, and interprets primitives using their minimal inclusion functions.
{ lambda ; a:f32[5]. let
b:f32[5] = integer_pow[y=2] a
c:f32[5] = sin b
in (c,) }
{ lambda ; a:f32[5] . let
b:f32[5] = integer_pow[y=2] a
c:f32[5] = sin b
in (c,) }
{ lambda ; a:f32[5]. let
b:f32[5] = integer_pow[y=2] a
c:f32[5] = sin b
in (c,) }
\[ \begin{gathered} % x \in \param{\ox,\alpha,y}_g^k, \quad w\in \calW \implies \\ \dot{y}_k = E_k(t,{\mathring{x}},\alpha,y) \geq \sup_{ x\in\left(\!\left( {\mathring{x}},\alpha,y \right)\!\right)_g^k,\, w\in \mathcal{W}} \underbrace{\left[\frac{\partial g_k}{\partial \alpha}(\alpha,x - {\mathring{x}}) [U(t,{\mathring{x}},\alpha,y)] + \frac{\partial g_k}{\partial x} (\alpha,x - {\mathring{x}}) [f(x,w) - f({\mathring{x}},{\mathring{w}})] \right]}_{=:\xi_k(x,w)} \end{gathered} \]
immrax.natif to obtain an inclusion function \(\Xi_k:\mathbb{I}\mathbb{R}^{n_x}\times\mathbb{I}\mathbb{R}^{n_w}\to\mathbb{I}\mathbb{R}^{n_y}\) for \(\xi_k\)\[
\begin{align*}
\dot{p}_x &= v \cos(\phi + \beta(u_2)), \\
\dot{p}_y &= v \sin(\phi + \beta(u_2)), \\
\dot{\phi} &=v\sin(\beta(u_2)), \\
\dot{v} &= u_1, \\
\beta(u_2) &= \arctan \left(\tfrac{1}{2}\tan(u_2)\right).
\end{align*}
\]
immrax.mjacM transformEach of the following set representations have been implemented in immrax using the mixed Jacobian linear differential inclusion.
| Set Rep. | Definition | Connections to the Literature (\(\dot{\alpha} = 0\)) | Paper |
|---|---|---|---|
| Intervals | \(\{x : \underline{x}\leq x \leq \overline{x}\}\) | Interval Reachability, Mixed Monotone Embeddings | [9] |
| H-Polytopes | \(\{x : \alpha(x - {\mathring{x}}) \leq y\}\) | Templated H-Polytopes (bound push through faces) | [10], [11], [6] |
| Normotopes | \(\{x : \|\alpha(x - {\mathring{x}})\| \leq y\}\) | Norm-Based Contraction Theory (log norms) | [12], [13] |
Use CROWN [14] to obtain the linear bounds \[ Cx + \underline{d}\leq \pi(x) \leq Cx + \overline{d}. \] Combine with mixed Jacobian LDI [15] to get \[ f(x,\pi(x)) - f({\mathring{x}},\pi({\mathring{x}})) \in \underbrace{([\mathcal{M}^x] + [\mathcal{M}^u]C)}_{\text{first-order interactions}}(x - {\mathring{x}}) + \underbrace{R}_{\text{remainder}} \]
| # Part. | CPU | GPU |
|---|---|---|
| \(1^4 = 1\) | \(.0112\) | \(.0178\) |
| \(2^4 = 16\) | \(.143\) | \(.0207\) |
| \(3^4 = 81\) | \(.627\) | \(.0306\) |
| \(4^4 = 256\) | \(1.44\) | \(.0489\) |
| \(5^4 = 625\) | \(4.60\) | \(.095\) |
| \(6^4 = 1296\) | \(11.1\) | \(.198\) |
\[ \begin{align*} \dot{p}_x &= v \cos(\phi + \beta(u_2)), \\ \dot{p}_y &= v \sin(\phi + \beta(u_2)), \\ \dot{\phi} &=v\sin(\beta(u_2)), \\ \dot{v} &= u_1, \\ \beta(u_2) &= \arctan \left(\tfrac{1}{2}\tan(u_2)\right). \end{align*} \]
Proof Sketch: \(\frac{\partial g_k}{\partial x}(\alpha,x - {\mathring{x}})[f(x,w)] \leq E_k({\mathring{x}},\alpha,y) \leq 0\) (barrier-like condition)
Trainable Loss \[ \mathcal{L}(\pi) = \sum_{k} (\operatorname{ReLU}(E_k + \varepsilon)) \]
induces
Simple Invariance Condition \[ E({\mathring{x}},\alpha,y) \leq 0 \]
Nonlinear Segway Model [17]
\[ \begin{aligned} \begin{bmatrix} \dot{\phi} \\ \dot{v} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} \dot{\phi} \\ \frac{\cos\phi(-1.8u + 11.5v+9.8\sin\phi)-10.9u+68.4v-1.2\dot{\phi}^2\sin\phi}{\cos\phi-24.7} \\ \frac{(9.3u-58.8v)\cos\phi + 38.6u - 234.5v - \sin\phi(208.3+\dot{\phi}^2\cos\phi)}{\cos^2\phi - 24.7} \end{bmatrix} \end{aligned} \]
Trainable Loss \[ \mathcal{L}(\pi) = \sum_{k} (\operatorname{ReLU}(E_k + \varepsilon)) \]
induces
Simple Invariance Condition \[ E({\mathring{x}},\alpha,y) \leq 0 \]
Nonlinear Vehicle Platoon
\[ \dot{p}_j = v_j, \quad \dot{v}_j = \sigma(u_j)(1 + w_j), \] \(\sigma(u)\) (softmax), \(w_j\in[-0.1,0.1]\). \[ u_j = \begin{cases} \pi((x_j,\ x_{j-3} - x_{j},\ x_{j} - x_{j+3})), & j=3k \\ \pi((0,\ x_{j-1} - x_j,\ x_j - x_{j+1})), & \text{ow}, \end{cases} \]
| N | States | Training Time (s) |
|---|---|---|
| 4 | 8 | 6.90 |
| 10 | 20 | 57.7 |
| 16 | 32 | 170. |
| 22 | 44 | 408. |
| 28 | 56 | 1040 |
In the previous slides, we only considered the \(\dot{\alpha} = 0\) case.
Recall for the linear system \(\dot{x} = Ax\), the \[ \dot{\alpha} = -\alpha A \] resulted in a cancellation leading to \(\dot{y} = 0\), and optimal constraints supporting the true reachable set.
For nonlinear systems \(\dot{x} = f(x)\), we consider the following as a good guess for “good” parameter dynamics. \[ \dot{\alpha} = -\alpha \frac{\partial f}{\partial x} ({\mathring{x}}) \]
| Benchmark | Instance | CORA | CROWN-Reach | JuliaReach | NNV | immrax |
|---|---|---|---|---|---|---|
| ACC | safe-distance | 3.091 | 2.525 | 0.638 | 26.751 | 0.066 |
| AttitudeControl | avoid | 3.418 | 3.485 | 5.728 | – | 0.507 |
| NAV | robust | 1.990 | 20.902 | 5.197 | 405.291 | 42.384 |
| TORA | reach-tanh | 3.166 | 7.486 | 0.357 | 63.523 | 0.020 |
| TORA | reach-sigmoid | 6.001 | 5.293 | 0.458 | 118.312 | 0.023 |
| N | States | Runtime (s) |
|---|---|---|
| 3 | 12 | 0.012 |
| 6 | 24 | 0.021 |
| 9 | 36 | 0.072 |
| 12 | 48 | 0.135 |
| 15 | 60 | 0.184 |
| 18 | 72 | 0.244 |
With \(\dot{\alpha} = 0\)
With \(\dot{\alpha} = -\alpha \frac{\partial f}{\partial x}({\mathring{x}})\)
\[ \begin{aligned} \dot{q}_1 &= z_1, \quad \dot{q}_2 = z_2, \\ \dot{z}_1 &= \tfrac{1}{mq_2^2 + ML^2/3}(-2mq_2z_1z_2 - k_{d_1}z_1 + k_{p_1}(u_1 - q_1)), \\ \dot{z}_2 &= q_2 z_1^2 + \tfrac1m (- k_{d_2} z_2 + k_{p_2} (u_2 - q_2)), \end{aligned} \]
Bounding full \([\mathcal{J}]\) LDI, \(\dot{\alpha} = 0\) [18]
Our interval \([\mathcal{M}]\) LDI, \(\dot{\alpha} = 0\)
Our \([\mathcal{M}]\) LDI, \(\dot{\alpha} = -\alpha \frac{\partial f}{\partial x}({\mathring{x}})\)
Minimizing the cost \[ \Phi({\mathring{x}},\alpha,y) := -\log\det(\alpha^T\alpha / y^2) \] minimizes the volume of the set \(\left[\!\left[ {\mathring{x}},\alpha,y \right]\!\right]\).
Idea: Use numerical optimal control to synthesize \(\dot{\alpha} = U\). \[ U(t,{\mathring{x}},\alpha,y) = -\alpha \frac{\partial f}{\partial x}({\mathring{x}}) + U_\text{ff}(t) \]
Motivation: Systems with Lie group states like a quadrotor with \(3\)D orientation: \[ \dot{R} = R\hat{\omega}. \] Propogating a full subset like \([\underline{R},\overline{R}] \subseteq \mathbb{R}^{3\times 3}\) is overconservative: 9 degrees of uncertainty for a 3-dim submanifold.
Idea: apply local Lie algebra equivalence.
Setting: Nonlinear system \[ \dot{x} = f(x), \] where \(x\in\mathcal{M}\) is a homogeneous Riemannian manifold and \(f\in\mathfrak{X}(\mathcal{M})\) is a vector field.
Systems cannot contract sets containing the image of a one-parameter subgroup through the action \(\lambda\).
Example: Spheres cannot contract any set containing a great circle.
immrax is our implementation of interval analysis using JAX for Python, supporting JIT compilation, automatic differentiation, and GPU parallelization.Definition (Jacobian-Based Inclusion Function)
Let \(f:\mathbb{R}^n\to\mathbb{R}^m\) be differentiable, with inclusion function \(\mathsf{J}\) for its Jacobian as \(\frac{\partial f}{\partial x}(x) \in [\mathsf{J}(\underline{x},\overline{x})]\) for every \(x\in[\underline{x},\overline{x}].\) Let \({\mathring{x}}\in[\underline{x},\overline{x}]\).
\[ \begin{align*} \mathsf{F}(\underline{x},\overline{x}) = [\mathsf{J}(\underline{x},\overline{x})]([\underline{x},\overline{x}] - {\mathring{x}}) + f({\mathring{x}}) \end{align*} \]
is a Jacobian-based inclusion function of \(f\).
Let \(g(\alpha,x - {\mathring{x}}) = \alpha (x - {\mathring{x}})\), and \(\alpha = \left[\begin{smallmatrix} -\mathbf{I} \\ \mathbf{I} \end{smallmatrix}\right]\). Then \[ \left(\!\left( {\mathring{x}},\left[\begin{smallmatrix} -\mathbf{I} \\ \mathbf{I} \end{smallmatrix}\right],\left[\begin{smallmatrix} -\underline{y} \\ \overline{y} \end{smallmatrix}\right] \right)\!\right)_g = \{x : \underline{y}\leq x - {\mathring{x}}\leq \overline{y}\} = [{\mathring{x}}+ \underline{y},{\mathring{x}}+ \overline{y}] . \] If we set \(\dot{\alpha} = 0\), Theorem’s inequality reduces to (for an upper \(k\)-th face) \[ \sup_{\substack{x\in[{\mathring{x}}+ \underline{y},{\mathring{x}}+ \overline{y}] \\ e_k^T(x - {\mathring{x}}) = \overline{y}_k}} e_k^T (f(x) - f({\mathring{x}})) = \sup_{\substack{x\in[{\mathring{x}}+ \underline{y},{\mathring{x}}+ \overline{y}] \\ x_k = {\mathring{x}}_k + \overline{y}_k}} (f_k(x) - f_k({\mathring{x}})) \leq \overline{\mathsf{F}}_k ([{\mathring{x}}+ \underline{y}_{k\leftarrow\overline{y}_k},{\mathring{x}}+ \overline{y}]) - f_k({\mathring{x}}) =: \dot{\overline{y}}_k \]
Let \(g(\alpha,x - {\mathring{x}}) = \alpha(x - {\mathring{x}})\), for \(\alpha = \left[\begin{smallmatrix} -H \\ H \end{smallmatrix}\right]\), where \(H\) is a tall full rank matrix. Then \[ % \param{\ox,[-H^T\ H^T]^T,[-\uly^T\ \oly^T]^T}_g = \{x : \uly \leq H(x - \ox) \leq \oly\}. \left(\!\left( {\mathring{x}},\left[\begin{smallmatrix} -H \\ H \end{smallmatrix}\right],\left[\begin{smallmatrix} -\underline{y} \\ \overline{y} \end{smallmatrix}\right] \right)\!\right)_g = \{x : \underline{y}\leq H(x - {\mathring{x}}) \leq \overline{y}\}. \] If we let \(\dot{\alpha} = 0\), \(H^+\) be a left inverse of \(H\), and \(\mathcal{H}= \{Hx\}\), Theorem’s inequality reduces to (for an upper face) \[ \sup_{\substack{x : H(x - {\mathring{x}})\in[\underline{y},\overline{y}] \\ H_k(x - {\mathring{x}}) = \overline{y}_k}} H_k (f(x) - f({\mathring{x}})) = \sup_{\substack{z\in\mathcal{H}\cap[\underline{y},\overline{y}] \\ z_k = \overline{y}_k}} H_k (f(H^+z + {\mathring{x}}) - f({\mathring{x}})) \leq \overline{\mathsf{G}}_k (\mathcal{I}_\mathcal{H}(H{\mathring{x}}+ [\underline{y}_{k\leftarrow\overline{y}_k},\overline{y}])) - H_k f({\mathring{x}}) =: \dot{\overline{y}}_k \]
Suppose we have a linear differential inclusion \[ f(x,w) - f({\mathring{x}},{\mathring{w}}) \in \operatorname{co}\{M_i\}_i (x - {\mathring{x}}) + \operatorname{co}\{M_j\}_j (w - {\mathring{w}}), \] then the following is a valid embedding system [], \[ \begin{aligned} \dot{{\mathring{x}}} &= f({\mathring{x}},{\mathring{w}}) \\ \dot{\alpha} &= U \\ \dot{y} &= \big(\max_{i} \mu(U\alpha^{-1} + \alpha M^x_i \alpha^{-1}) \big) y + \max_j \|\alpha M^w_j\|_{w\to x} \end{aligned} \]