CDC 2024
School of Electrical and Computer Engineering, Georgia Institute of Technology
December 16, 2024
The modern control system is becoming increasingly complex: nonlinearities, learning-based components, hybrid jumps
Problem: Overapproximating Reachable Sets
For the nonlinear system \[ \dot{x} = f(x,u),\quad x(0) = x_0, \] overapproximate the reachable set given a set of initial conditions \(x_0\in\mathcal{X}_0\) and inputs \(u(t)\in\mathcal{U}\).
Safety of the overapproximating reachable set \(\implies\) Safety for any real trajectory of the system
Example (Quadrotor Control)
Angular velocity integrates to rotation matrix as follows, \[ \dot{R} = R\hat{\omega} \] Propogating a full set of matrices like \([\underline{R},\overline{R}]\subseteq\mathbb{R}^{3\times 3}\) is exceedingly overconservative: \(9\) degrees of uncertainty to capture sets on the \(3\)-dim submanifold \(SO(3)\).
A naive implementation of reachability approaches for e.g. matrix Lie groups fails to capture underlying manifold structure.
Question
How can we approach the reachability problem when the underlying space is a nonlinear manifold?
This Presentation (Lie Groups)
Borrow strategies from geometric integration theory:
Definition (Order, Intervals)
Element-wise Order: \(x,y\in\mathbb{R}^n\), \[ x \leq y \iff \ \forall i,\, x_i \leq y_i \] Interval: \(\mathbb{IR}^n \ni [\underline{x},\overline{x}] = \{x : \underline{x}\leq x \leq \overline{x}\}\subset \mathbb{R}^n\)
Definition (Inclusion Function [2])
Given \(f:\mathbb{R}^n\to\mathbb{R}^m\), \(\mathsf{F}=[\underline{\mathsf{F}},\overline{\mathsf{F}}]:\mathbb{IR}^n\to\mathbb{IR}^m\) is an inclusion function if for every \(x\in[\underline{x},\overline{x}]\in\mathbb{IR}^n\), \[ f(x) \in [\underline{\mathsf{F}}(\underline{x},\overline{x}),\overline{\mathsf{F}}(\underline{x},\overline{x})]. \]
Original System
\[ \dot{x} = f(x,u), \quad x(0) = x_0 \] \(x\in\mathbb{R}^n\), \(u\in\mathbb{R}^m\).
\[ \Big\Downarrow \text{ inclusion function } \mathsf{F}(\underline{x},\overline{x},\underline{u},\overline{u}) \text{ of } f(x,u) \]
Embedding System
\[ \begin{aligned} \underline{x}_i &= \underline{\mathsf{F}}_i(\underline{x},\overline{x}_{i:\underline{x}},\underline{u},\overline{u}) = \underline{\mathsf{E}}_i(\underline{x},\overline{x},\underline{u},\overline{u}) \\ \overline{x}_i &= \overline{\mathsf{F}}_i(\underline{x}_{i:\overline{x}},\overline{x},\underline{u},\overline{u}) = \overline{\mathsf{E}}_i(\underline{x},\overline{x},\underline{u},\overline{u}) \\ \end{aligned} \] \(\left[\begin{smallmatrix} \underline{x} \\ \overline{x} \end{smallmatrix}\right]\in\mathbb{R}^{2n}\), \(\left[\begin{smallmatrix} \underline{u} \\ \overline{u} \end{smallmatrix}\right]\in\mathbb{R}^{2m}\).
Proposition (Interval Reachability) [3]
For any \(x_0\in[\underline{x}_0,\overline{x}_0]\in\mathbb{IR}^n\), \(u(t)\in[\underline{u}(t),\overline{u}(t)]\), \[ x(t) \in [\underline{x}(t), \overline{x}(t)], \] where \(t\mapsto x(t)\) is trajectory of original system, \(t\mapsto\left[\begin{smallmatrix} \underline{x}(t) \\ \overline{x}(t) \end{smallmatrix}\right]\) is trajectory of embedding system.
Embedding System
\[ \begin{aligned} \underline{x}_i &= \underline{\mathsf{F}}_i(\underline{x},\overline{x}_{i:\underline{x}},\underline{u},\overline{u}) = \underline{\mathsf{E}}_i(\underline{x},\overline{x},\underline{u},\overline{u}) \\ \overline{x}_i &= \overline{\mathsf{F}}_i(\underline{x}_{i:\overline{x}},\overline{x},\underline{u},\overline{u}) = \overline{\mathsf{E}}_i(\underline{x},\overline{x},\underline{u},\overline{u}) \\ \end{aligned} \] \(\left[\begin{smallmatrix} \underline{x} \\ \overline{x} \end{smallmatrix}\right]\in\mathbb{R}^{2n}\), \(\left[\begin{smallmatrix} \underline{u} \\ \overline{u} \end{smallmatrix}\right]\in\mathbb{R}^{2m}\).
Proposition (Interval Reachability) [3]
\(\forall x_0\in[\underline{x}_0,\overline{x}_0]\in\mathbb{IR}^n\), \(u(t)\in[\underline{u}(t),\overline{u}(t)]\) \[ x(t) \in [\underline{x}(t), \overline{x}(t)]. \]
Definition (Lie Group)
A Lie group is a manifold \(G\) with compatible group structure, i.e., the group operation and group inverse are smooth. \[ \begin{aligned} * : G\times G &\to G \\ g_1 * g_2 &\mapsto g_1g_2 \end{aligned} \quad \quad \begin{aligned} \cdot^{-1} : G &\to G \\ g &\mapsto g^{-1} \end{aligned} \]
For example, matrix groups (subgroups of \(GL(n)\)) are Lie groups. We will restrict to matrix Lie groups for simplicity.
Example (\(\mathbb{S}\simeq SO(2)\))
The circle \(\mathbb{S}= \{e^{i\theta} : \theta\in\mathbb{R}\}\) with the operation \[ e^{i\theta_1} e^{i\theta_2} = e^{i(\theta_1 + \theta_2)} \] and inverse \((e^{i\theta})^{-1} = e^{-i\theta}\).
Example (\(SO(3)\))
The group of \(3\)D rotations, \[ \{R\in\mathbb{R}^{3\times 3} : R^TR = I,\ \det(R) = +1\}, \] with matrix multiplication as group operation and \(R^{-1} = R^T\).
Definition (Left-Translation Map)
For \(g\in G\), \(\ell_g:G\to G\) is multiplication on the left, \[ \ell_g(h) = gh. \] Then the differential map \((d\ell_g)_h : T_gG\to T_{gh}G\) canonically bijects vectors between tangent spaces.
Definition (Left-Invariant Vector Field, Lie Algebra)
Let \(\mathfrak{g}= T_eG\) be the tangent space to \(e\) (Lie algebra). \[ \Theta\in T_eG \iff \Theta^L(g) = (d\ell_g)_e(\Theta) % \text{ left-invariant} \]
Definition (Exponential map)
Let \(\Theta\in\mathfrak{g}\) and let \(\gamma:\mathbb{R}\to G\) be the flow of the left-invariant vector field \(\Theta^L\) passing through \(\gamma(0) = e\). Define \(\exp : \mathfrak{g}\to G\), \[ \exp(\Theta) = \gamma(1). \]
Definition (Control System)
A Lie group control system is of the following form, \[ \dot{x} = (d\ell_x)_e(A(x,u)) = xA(x,u), \quad x(0) = x_0, \] where \(x\in \mathcal{X}\) is a Lie group, \(u\in\mathcal{U}\) is a vector space, \(A:\mathcal{X}\times\mathcal{U}\to\mathfrak{x}\) is a mapping to the Lie algebra \(\mathfrak{x}\) of \(\mathcal{X}\).
Example (Single Integrator on \(SO(3)\))
With \(\mathcal{X}= SO(3)\), \(\mathcal{U}= \mathbb{R}^3\), \[ \dot{R} = R\hat{u}, \quad R(0) = R_0, \] \(\hat{\cdot}:\mathbb{R}^3\to\mathfrak{so}(3)\) is the “hat map” identification of skew-symmetric matrices.
Original Lie Group System
\[ \dot{x} = xA(x,u), \quad x(0) = x_0 \] \(x\in\mathcal{X}\) (Lie group), \(u\in\mathcal{U}\) (vector space)
\[ \Big\Downarrow \]
Locally Equivalent Lie Algebra System
\[ \begin{gathered} \dot{\Theta} = \operatorname{dexp}^{-1}_{\Theta} (A(x, u)), \quad \Theta(0) = \Theta_0, \\ x = \underbrace{x_0 \exp(\Theta_0)^{-1}}_{\mathring{x}} \exp(\Theta) \end{gathered} \] \(\Theta\in\mathfrak{x}\) (Lie algebra), \(u\in\mathcal{U}\) (vector space)
Proposition: For small \(t\), recovers the original trajectory.
Differential of \(\exp\)
Left-trivialized differential of \(\exp\): \(\operatorname{dexp}:\mathfrak{x}\times\mathfrak{x}\to\mathfrak{x}\) \[ \frac{d}{dt}\bigg|_{t=0} \exp(\Theta + t\Omega) = \exp(\Theta)\operatorname{dexp}_\Theta(\Omega) % = (d\ell_{\exp(\Theta)})_e(\dexp_\Theta(\Omega)) \]
Analysis is centered around \({\mathring{x}}= x_0\exp(\Theta_0^{-1})\), identifying the tangent space \(T_{{\mathring{x}}}\mathcal{X}\simeq\mathfrak{x}\)
Crucial Fact: \(\Theta\) evolves on the vector space \(\mathfrak{x}\)
Definition (Tangent inteval and Exponentiated Tangent interval)
Let \([\underline{\Theta},\overline{\Theta}] \in \mathbb{I}\mathfrak{x}\) be an interval in the Lie algebra.
Lie Algebra System
\[ \begin{gathered} \dot{\Theta} = \underbrace{\operatorname{dexp}^{-1}_{\Theta} (A({\mathring{x}}\exp(\Theta), u))}_{f(\Theta,u)}, % \quad \Theta(0) = \Theta_0, \\ \end{gathered} \] \(\Theta\in\mathfrak{x}\) (Lie algebra), \(u\in\mathcal{U}\) (vector space)
\[ \Big\Downarrow \text{ inclusion function } \mathsf{F}(\underline{\Theta},\overline{\Theta},\underline{u},\overline{u}) \text{ of } f(\Theta,u) \]
Embedding Lie Algebra System
\[ \begin{aligned} \underline{\Theta}_i &= \underline{\mathsf{F}}_i(\underline{\Theta},\overline{\Theta}_{i:\underline{\Theta}},\underline{u},\overline{u}) = \underline{\mathsf{E}}_i(\underline{\Theta},\overline{\Theta},\underline{u},\overline{u}) \\ \overline{\Theta}_i &= \overline{\mathsf{F}}_i(\underline{\Theta}_{i:\overline{\Theta}},\overline{\Theta},\underline{u},\overline{u}) = \overline{\mathsf{E}}_i(\underline{\Theta},\overline{\Theta},\underline{u},\overline{u}) \\ \end{aligned} \] \(\left[\begin{smallmatrix} \underline{\Theta} \\ \overline{\Theta} \end{smallmatrix}\right]\in\mathbb{R}^{2n}\), \(\left[\begin{smallmatrix} \underline{u} \\ \overline{u} \end{smallmatrix}\right]\in\mathbb{R}^{2m}\).
Theorem (Tangent Interval Reachability)
For any \(x_0\in{\mathring{x}}\exp([\underline{\Theta}_0,\overline{\Theta}_0])\), \(u(t)\in[\underline{u}(t),\overline{u}(t)]\), for small \(t>0\), \[ x(t) \in {\mathring{x}}\exp([\underline{\Theta}(t), \overline{\Theta}(t)]), \] where \(t\mapsto x(t)\) is trajectory of original Lie group system, \(t\mapsto\left[\begin{smallmatrix} \underline{\Theta}(t) \\ \overline{\Theta}(t) \end{smallmatrix}\right]\) is trajectory of embedding system.
\[ \exp(\Theta_1) \exp(\Theta_2) = \exp(\Theta_3) \] is solved by an infinite sum of commutators (\([\![ \Theta_1,\Theta_2 ]\!] = \Theta_1\Theta_2 - \Theta_2\Theta_1\)), \[ \begin{align*} \Theta_3 &= \operatorname{bch}_{\Theta_1}(\Theta_2) = \Theta_1 + \Theta_2 + \frac12[\![ \Theta_1,\Theta_2 ]\!] + \cdots % &+ \frac1{12} \dbrak{\Theta_1,\dbrak{\Theta_1,\Theta_2}} - \frac1{12} \dbrak{\Theta_2,\dbrak{\Theta_1,\Theta_2}} + \cdots \end{align*} \]
Shift base point to move \([\underline{\Theta},\overline{\Theta}]\) back towards origin. Take midpoint \(\mathring{\Theta} = \frac{\underline{\Theta }+ \overline{\Theta}}{2}\)
New centering: \({\mathring{x}}' = {\mathring{x}}\exp(\mathring{\Theta})\)
New Lie algebra interval: Need \({\mathring{x}}'\exp([\underline{\Theta}',\overline{\Theta}']) \supseteq {\mathring{x}}\exp([\underline{\Theta},\overline{\Theta}])\)
Proposition (Recentering via BCH)
If \(\textsf{BCH}_\Theta\) is an inclusion function for \(\operatorname{bch}_\Theta\), \[ {\mathring{x}}\exp([\underline{\Theta},\overline{\Theta}]) \subseteq {\mathring{x}}\exp(\mathring{\Theta}) \exp(\textsf{BCH}_{-\mathring{\Theta}}([\underline{\Theta},\overline{\Theta}])) \]
Proposition (Abelian State Spaces)
Let \(G\) be an Abelian Lie group.
Examples
Coupled Oscillators \[ \begin{align*} \dot{x}_1 &= x_1\left(\hat{\omega}_1 + \log(x_2x_1^{-1})\right) \\ \dot{x}_2 &= x_2\left(\hat{\omega}_2 + \log(x_1x_2^{-1})\right) \end{align*} \]
Single Integrator on \(SO(3)\) \[ \begin{align*} \dot{R} = R\hat{u} \end{align*} \]
For all the details, please see the paper
Thank you for your attention!
\[ \begin{align*} \operatorname{ad}_\Theta(\Omega) &= [\![\Theta,\Omega]\!] \\ \operatorname{dexp}_{\Theta} &= \frac{1 - \exp(-\operatorname{ad}_\Theta)}{\operatorname{ad}_\Theta} = \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)!}(\operatorname{ad}_\Theta)^k \\ \operatorname{dexp}^{-1}_{\Theta} &= \frac{\operatorname{ad}_\Theta}{1 - \exp(-\operatorname{ad}_\Theta)} = \sum_{k=0}^\infty \frac{B_k}{k!} (\operatorname{ad}_\Theta)^k \end{align*} \]
Definition (Cone field)
A cone field \(\mathcal{K}\) on manifold \(M\) is a mapping such that \(\mathcal{K}(p)\subseteq T_pM\) is a cone for every \(p\in M\).
Definition (Tangent interval)
Given a cone field \(\mathcal{K}\) on manifold \(M\), a tangent interval is an interval in the tangent space at a point \(p\), i.e., \[ [\underline{v}_p,\overline{v}_p]_{\mathcal{K}(p)}. \] A base point plus an interval in the tangent space. Through a map like the Lie exponential map (or Riemannian exponential map), these can represent real sets on the manifold.