A Toolbox for Fast Interval Arithmetic in numpy with an Application to Formal Verification of Neural Network Controlled Systems

Akash Harapanahalli¹, Saber Jafarpour¹ and Samuel Coogan¹

 $^{(1)}$ Georgia Institute of Technology, {aharapan,saber,sam.coogan}@gatech.edu

Inclusion Functions

Goal: over-approximate the output of a mapping using intervals.

► Inclusion functions can capture localized behaviors of functions—they preserve the structure when the intervals are small.

Tight Inclusion Function

The inclusion function with the tightest input-output interval

$$[f]([x]) = \left[\inf_{x \in [x]} f(x), \sup_{x \in [x]} f(x) \right]$$

For a general function g, finding its tight inclusion function is computationally intractable.

Efficient Natural Inclusion Functions Using npinterval

Natural Inclusion Functions

Given $f = e_1 \circ \cdots \circ e_n$, and inclusion functions $[e_1], \ldots, [e_n],$ $[f] = [e_1] \circ \cdots \circ [e_n]$

is a natural inclusion function for f.

- npinterval defines a new interval dtype for numpy.
- Standard elementary ufuncs map to their tight inclusion function in compiled C.
- ► Familiar interface, support for n-dimensional arrays, matrix operations, vectorization.

import numpy as np, interval
i = np.interval(1, 2)
a = np.array([i+2, np.exp(i)])
print(np.sqrt(a))
 >> [([1.732, 2])
 ([1.649, 2.718])]
print(a.dtype)
 >> interval

Application: Neural Network Controlled Systems

Neural networks are deployed as controllers in safety-critical applications (self driving vehicle and mobile robots).

Problem Statement

Under uncertainty, ensure safety of the closed-loop system.

Challenges:

- 1. Neural networks are brittle with respect to input perturbations
- 2. The error can compound in the closed-loop interconnection.

Our approach: Safety verification via interval reachability

- lacksquare Disturbance ${\cal W}$ and initial uncertainty ${\cal X}_0$
- ► The *reachable set*

$$\mathcal{R}(t, \mathcal{X}_0, \mathcal{W}) = \{x(t) \text{ is a trajectory}\}$$

Unsafe set $\mathcal{S}_{\text{unsafe}} \subseteq \mathbb{R}^n$

Find an over-approximation $\overline{\mathcal{R}}(t,\mathcal{X}_0,\mathcal{W})$, and check if $\overline{\mathcal{R}}(t,\mathcal{X}_0,\mathcal{W})\bigcap\mathcal{S}_{unsafe}=\varnothing$

Inclusion Functions for Neural Networks

Find $\underline{N}, \overline{N}$ such that for every $x \in [\underline{x}, \overline{x}] \subseteq [\underline{y}, \overline{y}]$, $\underline{N}_{[y]}([x]) \leq N(x) \leq \overline{N}_{[y]}([x]).$

- ► CROWN [1] provides linear bounds $\underline{N}_{[y]}$ and $\overline{N}_{[y]}$.

Interval Reachability of Neural Network Controlled Systems

Consider $\dot{x} = f(x, N(x), w)$ with open-loop inclusion function [f], and inclusion function $[N]_{[y]}$. The *closed-loop embedding system* is

$$\underline{\dot{x}}_{i} = \underline{f}_{i}([\underline{x}, \overline{x}_{i:\underline{x}}], [N]_{[\underline{x}]}([\underline{x}, \overline{x}_{i:\underline{x}}]), [\underline{w}, \overline{w}]),
\underline{\dot{x}}_{i} = \overline{f}_{i}([\underline{x}_{i:\overline{x}}, \overline{x}], [N]_{[\underline{x}]}([\underline{x}_{i:\overline{x}}, \overline{x}]), [\underline{w}, \overline{w}])$$

A single trajectory of the embedding system provides lower bound \underline{x} and upper bound \overline{x} on reachable set of original system at time t.

Numerical Experiments

- ► Partitioning improves the accuracy of interval analysis.
- separation between i) partitions that query neural network verification algorithm, and ii) partitions that only do integration.

Vehicle Model:

Kinematic bicycle model, controlled by a $4\times100\times100\times2$ ReLU neural network, trained to stabilize to the origin while avoiding an obstacle.

Double Integrator Model:

Controlled by a $2 \times 10 \times 5 \times 1$ ReLU neural network, compare to [2,3].

Method	Runtime (s)	Area
ReachMM-CG	1.762 ± 0.026	$9.9\cdot 10^{-3}$
ReachLP-Unif	3.149 ± 0.004	$1.0 \cdot 10^{-2}$
ReachLP-GSG	2.164 ± 0.031	$8.8 \cdot 10^{-2}$
ReachLipBnB	3.681 ± 0.100	$1.2 \cdot 10^{-2}$

References

- (1) H. Zhang et al., Efficient neural network robustness certification with general activation function, NeurIPS, 2018
- (2) M. Everett et al., Reachability analysis of neural feedback loops, IEEE Access, 2021
- (3) T. Entesari et al., ReachLipBnB: A branch-and-bound method for reachability analysis of neural autonomous systems using Lipschitz bounds, ICRA, 2023