Interval Reachability of Nonlinear Dynamical Systems with Neural Network Controllers

Saber Jafarpour*¹, Akash Harapanahalli*¹, and Samuel Coogan 1

⁽¹⁾ Georgia Institute of Technology, {saber,aharapan,sam.coogan}@gatech.edu

Neural Network Controllers

Neural networks are deployed as controllers in safety-critical applications (self driving vehicle and mobile robots).

Problem

Under uncertainty, ensure safety of the closed-loop system.

Challenges:

Compositional Reachability of the Closed-loop System

- open-loop system \$\bar{x} = f(x, u, w)\$ with inclusion function \$\mathbf{F} = [\frac{\mathbf{F}}{\mathbf{F}}]\$ for \$f\$,
 neural network controller \$u = N(x)\$ with inclusion function \$[\frac{N}{N}]\$]\$
- the embedding system for the closed-loop system is

$$\underline{\dot{x}}_{i} = \underline{\mathsf{F}}_{i}(\underline{x}, \overline{x}_{i:\underline{x}}, \underline{\eta}_{i}, \overline{\eta}_{i}, \underline{w}, \overline{w}) := \underline{\mathsf{F}}_{i}^{\mathsf{S}}(\underline{x}, \overline{x}, \underline{w}, \overline{w}),$$
$$\underline{\dot{x}}_{i} = \overline{\mathsf{F}}_{i}(\underline{x}_{i:\overline{x}}, \overline{x}, \underline{\nu}_{i}, \overline{\nu}_{i}, \underline{w}, \overline{w}) := \overline{\mathsf{F}}_{i}^{\mathsf{S}}(\underline{x}, \overline{x}, \underline{w}, \overline{w}).$$

Learning-based Feedback

- 1. Neural networks are brittle with respect to input perturbations
- 2. The error can compound in the closed-loop interconnection.

Safety Verification via Reachability Analysis

 ► The disturbance W ► The initial uncertainty X₀ ► The reachable set R(t, X₀, W) = {x(t) is a trajectory} ► Unsafe set S_{unsafe} ⊆ ℝⁿ 	

Find an over-approximation $\overline{\mathcal{R}}(t, \mathcal{X}_0, \mathcal{W})$, and check if $\overline{\mathcal{R}}(t, \mathcal{X}_0, \mathcal{W}) \bigcap \mathcal{S}_{unsafe} = \emptyset$

η_i	$- IV [\underline{x}, \overline{x}] $	(\underline{x}, x)	$\eta_i - \eta_i$	$,\overline{x}](\underline{x}, x_{i:\underline{x}})$	$\eta_i - \eta_i - \eta_i, \overline{x}$	$[\underline{x}](\underline{x}, x_{i:\underline{x}})$
$\underline{\nu}_i = \underline{N}_{[\underline{x},\overline{x}]}(\underline{x},\overline{x})$			$\underline{\nu}_i = \underline{N}_{[\underline{x},\overline{x}]}(\underline{x}_{i:\overline{x}},\overline{x})$		$\underline{\nu}_i = \underline{N}_{[\underline{x}_{i:\overline{x}},\overline{x}]}(\underline{x}_{i:\overline{x}},\overline{x})$	
$\overline{ u}_i$	$=\overline{N}_{[\underline{x},\overline{x}]}($	$(\underline{x}, \overline{x})$	$\overline{\nu}_i = \overline{N}_{[\underline{x},\overline{x}]}(\underline{x}_{i:\overline{x}},\overline{x})$		$\overline{\nu}_i = \overline{N}_{[\underline{x}_{i:\overline{x}},\overline{x}]}(\underline{x}_{i:\overline{x}},\overline{x})$	
$\underline{\underline{I}}_{i}$	$\underline{N},\overline{N}$ \overline{x}_i \underline{x}_i	$\underline{u},\overline{u}$ \overline{x}_i	$\underline{N},\overline{N}$ \underline{x}_{i} \overline{x}_{i}	$\underline{\underline{u}},\overline{u}$	$\underline{N},\overline{N}$ \underline{x}_i \overline{x}_i	$\underline{\underline{u}},\overline{u}$

Computational Efficiency

Tightness to Reachable Set

Theorem

For disturbance $\mathcal{W} = [\underline{w}, \overline{w}]$ and initial set $\mathcal{X}_0 = [\underline{x}_0, \overline{x}_0]$, $\mathcal{R}(t, \mathcal{X}_0, \mathcal{W}) \subseteq [\underline{x}^{\mathsf{S}}(t), \overline{x}^{\mathsf{S}}(t)]$, where $(\underline{x}^{\mathsf{S}}(t), \overline{x}^{\mathsf{S}})$ is the trajectory of F^{S} for $\mathsf{S} \in \{\mathsf{G}, \mathsf{H}, \mathsf{L}\}$.

Interval Analysis

Goal: over-approximate the output of a mapping using intervals.

Numerical Experiments

 Partitioning improves the accuracy of interval analysis.

- Inclusion functions can capture localized behaviors of functions—they preserve the structure when the intervals are small.
- Different approaches exist for constructing inclusion functions.

Interval Reachability of Dynamical Systems

- ► Consider $\dot{x} = f(x, w)$ with an inclusion function $\mathbf{F} = \begin{bmatrix} \frac{\mathbf{F}}{\mathbf{F}} \end{bmatrix}$ for f, the *embedding system* is
 - $\underline{\dot{x}}_i = \underline{\mathsf{F}}_i(\underline{x}, \overline{x}_{i:\underline{x}}, \underline{w}, \overline{w}), \\ \underline{\dot{x}}_i = \overline{\mathsf{F}}_i(\underline{x}_{i:\overline{x}}, \overline{x}, \underline{w}, \overline{w})$

A single trajectory of the embedding system provides lower bound \underline{x} and upper bound \overline{x} on reachable set of original system at time t.

 separation between i) partitions that query neural network verification algorithm, and ii) partitions that only do integration.

Vehicle Model:

Kinematic bicycle model, controlled by a $4 \times 100 \times 100 \times 2$ ReLU neural network, trained to stabilize to the origin while avoiding an obstacle.

Double Integrator Model:

Controlled by a $2 \times 10 \times 5 \times 1$ ReLU neural network, compare to [2,3].

Main Question: How to construct an embedding system for the neural network controlled system?

Inclusion Functions for Neural Networks

Find $\underline{N}, \overline{N}$ such that for every $x \in [\underline{x}, \overline{x}] \subseteq [\underline{y}, \overline{y}]$, $\underline{N}_{[\underline{y},\overline{y}]}(\underline{x}, \overline{x}) \leq N(x) \leq \overline{N}_{[\underline{y},\overline{y}]}(\underline{x}, \overline{x}).$

 <u>N</u>, <u>N</u>: neural network verification algorithms such as CROWN, IBP, LipSDP.
 CROWN [1] provides linear bounds <u>N</u>[<u>y</u>,<u>y</u>] and <u>N</u>[<u>y</u>,<u>y</u>].

Method	Runtime (s)	Area	
ReachMM-CG	0.079 ± 0.001	$1.0\cdot 10^{-1}$	
ReachLP-Unif	0.212 ± 0.002	$1.5 \cdot 10^{-1}$	
ReachLP-GSG	0.913 ± 0.031	$5.3 \cdot 10^{-1}$	
ReachLipBnB	0.956 ± 0.067	$5.4 \cdot 10^{-1}$	

References

- (1) H. Zhang et al., *Efficient neural network robustness certification with general activation function*, NeurIPS, 2018
- (2) M. Everett et al., *Reachability analysis of neural feedback loops*, IEEE Access, 2021
- (3) T. Entesari et al., *ReachLipBnB: A branch-and- bound method for reachability analysis of neural autonomous systems using lipschitz bounds*, arXiv, 2022